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Abstract

Calotropis gigantea (L.) W.T.Aiton, a wild plant thriving in arid environments, has been traditionally used for
medicinal purposes by communities near Baluran National Park (BNP). The latex of C. gigantea is used as a crab
poison due to its ability to cause fatal damage and separation of body parts, possibly related to chitin disruption in
insects. This study explores the potential insecticidal properties of secondary metabolites in C. gigantea using
Prediction of Activity Spectra for Substance (PASS) Online. Out of 68 identified secondary metabolites, six show
significant insecticidal potential, namely Profenophos, Ethion, Alpha-Citral, 1-Phenylethyl acetate, (E)-dec-3-en-2-one,
and Benzaldehyde. Notably, Profenophos, Ethion, Alpha-Citral, and Benzaldehyde exhibit toxic properties effective
against insects, with enzyme inhibitory activity affecting nerve signaling and immune systems, suggesting potential for

bio-insecticide development.
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Introduction

Calotropis gigantea (L.) W.T.Aiton occupied xeric
conditions and arid soil (Al Sulaibi et al., 2020;
Kemala et al., 2022). The foliage of C. gigantea is
characterized by ovate, robust, and stemless leaves,
notable for their fine hairs covering the entire
surface of the plant. Notably, all parts of C.
gigantea have the capacity to produce latex
(Lakshani et al., 2022). Its geographic distribution
encompasses regions across India, South China,
New Guinea, Hawaii, and Southeast Asia (Patil,
2020).

Globally, C. gigantea has been utilized for an
extensive period. All components of the plant,
including leaves, flowers, stems, roots, latex, and
fibers, are widely utilized. The utilization of C.
gigantea encompasses a wide array of applications
in traditional medicine, where its leaves, flowers,
stems, roots, and latex are employed to treat various
ailments such as syphilis, leprosy, stomach tumors,
tuberculosis, skin diseases, hemorrhoids, insect
bites and wounds, dysentery, laxatives, toothaches,
and diabetes (Lakshani et al., 2022). Furthermore,
its fiber finds application as a primary material in
the fabrication of carpets, ropes, fishing nets, and
sewing thread due to its potential as a substitute for
synthetic fibers (Ramesh et al., 2021).

Baluran National Park (BNP), located in East Java,
is where C. gigantea, known as "Biduri" in
Indonesia, is widely distributed in the wild.

(Octavia et al., 2008). Indigenous communities
residing around BNP utilize this plant for medicinal
purposes, specifically to alleviate toothache and as
a poison for freshwater crabs known as "yuyu" (the
local name for freshwater crab). Information
gathered from local communities indicates that
Biduri's latex, when used as a poison for freshwater
crabs, leads to their demise and the subsequent
separation of body segments. This segment
separation is closely associated with the damage
inflicted upon the exoskeleton of freshwater crabs
(Morsli et al.,, 2015), composed primarily of
chitin—a substance present in all members of the
Arthropod Filum, including insects (Vogan et al.,
2008). Consequently, it is inferred that the toxic
latex properties of C. gigantea cause mortality in
insects.

Several studies have indicated that C. gigantea
possesses numerous biological activities that can be
harnessed (Kumar et al., 2013). Among its potential
activities is its efficacy as an insecticide (Kumar et
al., 2013; Habib and Muhammad, 2016; Khasanah
et al., 2021; Takshila et al., 2022). The insecticidal
potential of plants is often associated with their
secondary metabolites. In their respective studies,
Habib and Karim (2016), Singh et al. (2018), and
Madhavan et al. (2020) reported several compounds
found in C. gigantea that exhibit insecticidal
activity against various insects, as determined
through gas chromatography-mass spectrometer
(GC-MS) analysis. Despite numerous secondary
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metabolites being identified for their insecticidal
activity, there is currently no research report that
has focused on identifying the most potent
secondary metabolites for use as insecticides in C.
gigantea.

The biological activity analysis of secondary
metabolite compounds can be readily and cost-
effectively  accessed  through  international
databases. These databases facilitate the prediction
of a compound's potential before conducting
additional laboratory research. Hence, this article
conducted an analysis to forecast the potential of C.
gigantea's secondary metabolites as insecticides
using platforms like PubChem and Way2drug. The
objective of this study was to investigate the
insecticidal efficacy of C. gigantea based on the
PASS online database.

Materials and Methods

The secondary metabolites in C. gigantea were
identified through a review of scientific articles,
focusing on those with potential as insecticides.
These metabolites were then subjected to analysis
to predict their potency.

The analysis involved comparing the Pa (active)
and Pi (inactive) values of the secondary
metabolites. Information regarding these values
was gathered using Canonical Simplified Molecular
Input Line Entry System (SMILES) data collected
from the Pubchem online database at
http://pubchem.ncbi.nlm.nih.gov/. The SMILES
data were then analyzed to make predictions about
the compounds' potential.

To predict the insecticidal potential of the
compounds, the Prediction of Activity Spectra for
Substance (PASS) tool available at
http://www.way2drug.com/PASSOnline/predict.ph
p was utilized. The results of the PASS analysis
were evaluated based on the Pa (probability for
active compounds) and Pi (probability for inactive
compounds) values for each compound.

According to Matin et al. (2016), a Pa value greater
than 0.7 indicates a high likelihood of the
compound being highly active in experiments. A Pa
value between 0.5 and 0.7 suggests moderate
activity, while a Pa value less than 0.5 indicates a
low activity likelihood in the experiment.

Results

Calotropis gigantea, a perennial herbaceous plant,
has been identified as a source of secondary

metabolites based on our literature review. We
found a total of 68 secondary metabolites from C.
gigantea with potential as insecticides (Suppl. 1).
Among these, 6 compounds exhibited insecticidal
potential with Pa values greater than 0.5 (Fig. 1).
According to PASS online analysis, the Pa values
of secondary metabolites from C. gigantea ranged
from 0.1 to 0.8. This range indicates that the
potential of C. gigantea secondary metabolites as
insecticides ranges from 10% to 80%.

The highest potency of insecticidal activity (Pa >
0.7) was observed in Profenophos and Ethion
compounds, suggesting a very active possibility as
insecticides in experiments. On the other hand,
compounds like Alpha-Citral, 1-Phenylethyl
acetate, (E)-dec-3-en-2-one, and Benzaldehyde
exhibited Pa values between 0.5 and 0.7, indicating
a less active possibility as insecticides in
experiments. Furthermore, 62 other secondary
metabolites had Pa values below 0.5, suggesting a
very small possibility of activity as insecticides in
experiments.

Our literature review revealed that 4 of these
secondary metabolites (Profenophos, Ethion,
Alpha-Citral, and Benzaldehyde) have been
reported to possess toxic properties effective in
killing insects (Table 1). These secondary
metabolites exhibit different characteristics, roles,
and modes of action as insecticides.

Profenophos

Profenophos, belonging to the organophosphate
group, stands as one of the most extensively
utilized insecticides for pest management within
agricultural ecosystems. Organophosphates
constitute a class of aromatic derivative compounds
originating from phosphoric acid, thiophosphoric
acid, and other phosphoric acids (Kushwaha et al.,
2016; El-bouhy et al., 2023). These compounds,
known for their toxic properties towards organisms
(Nugroho et al., 2015), serve as precursors for
numerous insecticides, herbicides, and nerve agents
(Kushwaha et al., 2016).

The potential of Profenophos as an insecticide
stems from its toxic properties. The World Health
Organization (WHO) has classified Profenophos as
a class II hazardous toxin compound, signifying
moderate toxic properties (Maharajan et al., 2013).
Despite its toxicity, Profenophos finds widespread
application in controlling insect pests on crops such
as chilies, onions, corn, coffee, tomatoes, cotton,
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beans, potatoes, and various vegetables (Rodrigues
et al.,, 2020; Kushwaha et al., 2016). Numerous
studies have demonstrated the effectiveness of
Profenophos against various insect pests including
Spodoptera litura (Ahmed et al., 2019), sucking

insects like Aphis gossypii and Bemisia tabaci, and
plant lice (El-Sherbeni et al., 2019; Patil and

Prakash, 2013).
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Figure 1. The Pa value (Potential activity) of several C. gigantea secondary metabolites that have the

potential as insecticides.

Table 1. The Role of Secondary Metabolites of C. gigantea as Insecticides

No Metabolite Group

Role

Target Insects

References

1.  Profenophos Organophosphates

2. Ethion Aromatic \
3. Alpha-Citral Aromatic v
4.  Benzaldehyde Aromatic v
5. 1-Phenylethyl Acetate  Aromatic -
6.  (E)-dec-3-en-2-one Aromatic -

Spodoptera litura,

Ahmed et al.,

Aphis gossypii, 2019; El-Sherbeni,
Bemisia tabaci, plant et al., 2019; Patil
lice and Prakash, 2013
Anopheles Marwaha, 2015
culicifacies

Musca domestica, Aungtikun et al.,
Anopheles stephensi,  2021; Soonwera
Aedes aegypti and Sirawut, 2020
Galleria  melonella, Kumar et al., 2022;
Drosophila Neto et al.,
melanogaster 2021

Liang et al., 2016;
Bitterling et al.,
2020

Api et al., 2021;
Knowles and
Knowles, 2012

Note: (-) there is no experimental evidence that this compound acts as an insecticide; (V) there is ex

Profenophos, also known as O-(4-bromo-2-
chlorophenyl) O-ethyl S-propyl phosphorothioate,
has been developed to combat pest strains resistant
to other organophosphate insecticides (Gotoh et al.,
2001). It functions by inhibiting the hydrolysis of

Acetylcholinesterase (AChE), an enzyme crucial

for neurotransmission

vertebrates  and

invertebrates. AChE regulates nerve impulses by
breaking down acetylcholine (ACh) into acetic acid
and choline, thus facilitating nerve impulse
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transmission (Dhamayanti and Fitri, 2018;
Kushwaha et al., 2016).
However, = Profenophos  poses significant

environmental hazards due to its persistence and
non-degradability. It can contaminate the
environment, including surface waters, soil, and
groundwater (Subsanguan et al., 2020; Kushwaha
et al., 2016). Nonetheless, efforts to mitigate
Profenophos contamination have been explored
through bacterial applications, as documented in
studies by Ghani et al. (2021) and Jabeen et al.
(2015).

Ethion

Ethion, also known as 0,0,0',0'-Tetracthyl S,S'-
methylene bis(phosphorodithioate), is categorized
as an organophosphate insecticide. Widely used in
plantations and agriculture, ethion serves as a non-
systemic insecticide and acaricide (mite killer), as
documented by Abdel-Gawat et al. (2021) and
Verma et al. (2018). Moreover, it finds application
in controlling skin parasites and insects in livestock
(Verma et al., 2018).

Similar to other organophosphate compounds,
ethion exhibits insecticidal potential by inhibiting
Acetylcholinesterase (AChE), an enzyme crucial
for neurotransmitter breakdown. AChE catalyzes
the conversion of acetylcholine into choline and
acetate. Inhibition of AChE leads to the
accumulation of acetylcholine at synaptic junctions,
resulting in continuous nerve impulses and
hyperexcitation that ultimately leads to involuntary
muscle twitching and insect mortality (Marwaha,
2015).

Ethion is also known to induce oxidative stress by
elevating stress markers and disrupting oxidative
balance, leading to an excessive accumulation of
reactive oxygen species (ROS) (Abdel-Gawat et al.,
2021). Studies by Marwaha (2015) suggest that
ethion induces genotoxicity in Anopheles
culicifacies mosquitoes. Additionally, Verma et al.
(2018) highlight its impact on various organisms,
including mammals, chicks, fish, and freshwater
invertebrates, underscoring its potential broader
environmental effects beyond its insecticidal
properties.

Alpha-Citral

Alpha-Citral, also known as geraniol or C10H180,
belongs to the class of monoterpene alcohols and
aromatic compounds. Widely utilized as a fragrance

ingredient in cosmetic and household products,
Alpha-Citral emits a sweet, floral, and citrusy scent.
It is naturally found in approximately 250 essential
oils derived from various plant species such as
Cymbopogon  citratus, = Monarda  fistulosa,
Aeollanthus myrianthus, and rose (Aungtikun et al.,
2021; Maczka et al., 2020).

Alpha-Citral exhibits significant biological activity
as an effective insecticide against Musca domestica,
Anopheles stephensi, and Aedes aegypti (Soonwera
and Sirawut, 2020). This efficacy is corroborated
by research conducted by Aungtikun et al. (2021),
which highlighted Alpha-Citral's bio-insecticidal
effectiveness against M. domestica.

Moreover, Alpha-Citral possesses toxic properties
(Setlur et al., 2023; Aungtikun et al., 2021;
Soonwera and Sirawut, 2020) and acts as an active
fumigant (Jang et al., 2016). Jang et al. (2016)
investigated the insecticidal mechanism of Alpha-
Citral and found that it inhibits Glutathione S-
transferase (GST), a group of enzymes crucial for
detoxification = and  elimination of  toxic
contaminants, as well as in insecticide resistance
mechanisms.  Alpha-Citral, being an a,p-
unsaturated carbonyl compound, can inhibit GST in
insects and induce nervous disorders. Notably,
Alpha-Citral exhibits a higher GST inhibition
compared to other compounds found in essential
oils (Jang et al., 2016).

Benzaldehyde

Benzaldehyde, also known by various synonyms
such as Artificial Almond Oil, Benzenecarbonal,
Benzoic  Aldehyde,  Benzenecarboxaldehyde,
Benzenemethylal, Benzene Carboxaldehyde, Bitter
Almond Oil (synthetic), Phenylformaldehyde, and
Phenylmethanol Aldehyde, is a clear to yellowish
liquid oil with a bitter almond scent (Andersen,
2006). This aromatic aldehyde finds extensive use
as an additive in cosmetic and food products,
serving roles as a denaturant, flavoring agent,
fragrance, and a crucial natural fruit flavoring
(Kumar et al., 2022).

The insecticidal toxicity of benzaldehyde has been
well-documented. Ullah et al. (2015) reported on
benzaldehyde derived from secondary metabolites
of the Dbacterium Photorhabdus temperata,
showcasing its ability to inhibit the phenol oxidase
immune response mechanism in  Galleria
melonella.  Benzaldehyde  exhibited  100%
effectiveness against G. melonella larvae at a pure
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concentration of 8 mM, 108 hours after injection.
Moreover, benzaldehyde's toxicity to insects has
been observed in Drosophila melanogaster as well
(Kumar et al., 2022; Neto et al., 2021).

Apart from its toxic properties, the aroma of
benzaldehyde also serves as an attractant for
insects, making it useful in insect monitoring. It has
been reported as an attractant for Sitona humeralis
(Lohonyai et al., 2019) and Xyleborinus saxesenii
(Yang et al., 2018.
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